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Abstract— In continuous casting of steel, metallurgical length 
(ML) is the distance between the exit from the mold and the point 
of full solidification of a steel slab. This work explores the 
potential of using the open-loop spray-cooling control to 
minimize ML deviations from the desired location during 
casting speed changes under spray flow rate constraints. This 
objective essentially reduces to motion planning, i.e. apriori 
generation of spray flow rate commands, which when applied to 
the process make the latter execute the motion that reduces ML 
deviations from the setpoint in the shortest time possible.  The 
existence and uniqueness of the solution of the single-phase one-
dimensional (1D) Stefan solidification model and its two-
dimensional (2D) extension representing the solidifying slab 
cross-section under bounded bang-bang control and some 
simplifying but practically justified assumptions are proved. The 
general synthesis setting for bang-bang control of the single-
phase 1D Stefan problem and its 2D extension under boundary 
flux input constraints is formulated. Then, the bang-bang 
control for the minimization of the ML deviation from the 
desired value after the casting speed increase is heuristically 
found for the 2D slab model through trial-and-error. The 
simulation results of bang-bang ML control are provided. 

 

I. INTRODUCTION 

Processes involving solidification are wide-spread in 
manufacturing but pose several significant challenges to 
traditional control theoretic methods due to being 
fundamentally infinite-dimensional and nonlinear in nature.  
The simplest, but still accurate, model of such processes, 
commonly called the Stefan Problem, splits the spatial 
domain into separate sub-domains for the liquid and the solid 
parts of the material. Within the sub-domains, temperature 
follows the usual parabolic heat-diffusion partial differential 
equation (PDE). The boundary between the domains moves 
according to the conservation of energy, written as the Stefan 
condition in terms of the temperature gradients on both sides 
of the boundary. Consider a special solidification process: 
continuous casting, which as of 2016 was used to make more 
than 96.2% of the steel in the world [1].  An illustration of this 
process is shown in Figure 1. A typical continuous casting 
operation keeps a constant flow rate of liquid metal into the 
machine. The metal in the caster, called the strand, cools and 
solidifies as it moves through the machine. Steel solidification 
starts in the mold – the primary cooling zone. Below the mold 
is the area referred to as the secondary cooling zone where 
heat is removed by water cooling sprays and support rolls 
through direct contact with the strand surface. At the exit of 
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the caster, the fully solid metal is cut into separate pieces 

either to be processed further or shipped directly to customer   
    In continuous casting of steel, strand surface temperature 
and metallurgical length (ML) - the distance between the 
meniscus and the point of full steel slab solidification - are 
two key processing variables that require real-time control to 
meet product quality and operational safety demands. The 
curved strand of steel undergoes unbending, which causes 
tensile stress on the inside radius surface that results in 
transverse cracks if the steel is too brittle. The focus of the 
control methods currently used in the steel industry is to 
optimize the surface temperature profile down the caster to 
avoid stress, like that arising due to unbending, in the 
temperature regions of low ductility to minimize the possible 
creation of cracks. However, ML regulation may be more 
important for operations limited by the casting speed, or for 
steel grades that are more sensitive to centerline defects, such 
as centerline segregation, than to surface defects. Centerline 
segregation is a type of macro-segregation that appears as a 
line of impurities distributed near the centerline along the slab 
length. It is usually associated with other defects, such as 
centerline porosity, inclusions, alloy-rich regions, cracks, and 
other undesired property variations. These centerline defects 
are often very harmful, especially in highly-alloyed steels, or 
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Figure 1. Illustration of continuous steel slab caster. 

 
Figure 1.  Illustration of continuous steel slab caster. 
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when the slab is rolled into thin plates [2]. During 
solidification process, continuously cast steel undergoes 
volume shrinkage or deformation while transitioning from 
liquid phase to solid phase, as shown in Figure 2. The gap 
between supporting rolls, which defines the taper of the entire 
casting machine, is designed to decrease along the caster to 
compensate for the volume changes. Strand centerline is 
susceptible to segregation and other defects if proper 
compensation is not achieved. Soft reduction technology has 
been developed to reduce centerline segregation and related 
centerline defects. The caster from Figure 1 usually has rollers 
with small radius, whose location can be adjusted in real time 
to impose a reasonable reduction profile to compensate for 
liquid core shrinkage. The optimum point to apply reduction 
is the solidification end (the ML). If the reduction is applied 
after the solidification end, then the steel is completely solid 
upon entering the region, and the large forces between the 
rolls and the strand damage both. If the reduction is applied 
before the solidification end, then the soft reduction is 
insufficient where it is needed and centerline defects will 

arise. Therefore, the soft reduction operation performs best 
when the ML stays constant with time. 

The potential of using open-loop control for the task of 
maintaining ML during casting speed drops was explored in 
[3], and the results show that bang-bang control has the best 
performance among the methods studied. However, the well-
posedness and rigorous mathematical formulation of bang-
bang control as applied to steel casting have not been 
addressed, and the study was limited to the casting speed 
drop.  

The continuous steel casting process has natural nonlinear 
infinite-dimensional representations in terms of the Stefan 
problem partial differential equation (PDE) [4] and the more 
detailed enthalpy formulations [5]. These are simplified 1D 
models which could be assembled into a 2D cross-section 
transient model of the three-dimensional (3D) slab 
solidification process through spatial step interpolation [6]. 
Measurements are only available at particular points in the 
caster, each corresponding to a single discrete-in-time 
boundary point [7]. Two models are considered in this paper. 

The first model is based on the 1D Stefan problem, using 
continuous boundary measurements. The second model is an 
industrial grade 2D transient process model based on the 1D 
enthalpy formulation [3]. Existence and uniqueness of 
solutions to the various Stefan problem, in contrast to the 
enthalpy method, is very well studied [4] [8] [9]. The two-
phase Stefan problem with Dirichlet and Neumann boundary 
conditions imposed at both liquid and solid boundaries under 
minimum smoothness assumptions on data was studied, 
respectively, in [10] and [11]. Results on Stefan problem 
relevant to this work are also given in [12]-[17]. 

In the present work, first, the existence and uniqueness of 
the solution of the single-phase 1D Stefan model [7] under 
bounded bang-bang control and some simplifying but 
practically justified assumptions are proved. Then, the result 
is extended to the 2D interpolation-based model. Next, the 
general synthesis setting for bang-bang control of the 1D 
single-phase Stefan problem and its interpolation-based 2D 
extension under boundary flux inputs with hard constraints is 
formulated. Then, the bang-bang control for the minimization 
of the ML deviation from the desired value after the casting 
speed increase is heuristically found for the 2D slab model 
through trial-and-error, and the resulting simulation is 
provided.  

The proofs of formal statements are omitted due to space 
limitation and will be provided in a separated publication. 

II. MATHEMATICAL MODELS 

In solidifying steel, heat is transferred by diffusion and 
advection. However, through a scaling argument, diffusion 
heat transfer can be neglected, as the advection dominates the 
conduction in the casting direction. By taking reference frame 
that moves with the material down through the caster, the 
entire 3D problem can be modeled as a 2D slice of the 
material with reasonable accuracy. Furthermore, in slab 
casters, heat transfer along width direction is negligible. 
Therefore, a 1D transverse slice with through-thickness 
solidification at the center reasonably well represents the 
entire 2D slice solidification and gives good accuracy, except, 
possibly at the corners, where the model needs to be slightly 
adjusted. The 1D slice will be used for this work. To simplify 
the notation, and to permits generalization of the results to the 
entire strand, the work in this paper will also assume the 
temperature is symmetric across the center of the strand.  

A. Single-Phase Stefan Problem 

The domain of the moving 1D slice of the caster is divided 
into two separate sub-domains, solid steel and liquid steel. 
Within each subdomain, temperature evolves according to the 
usual linear parabolic heat diffusion equation. The liquid-
solid boundary moves according to the conservation of energy 
between the heat fluxes - proportional to the temperature 
gradients on either side of the boundary and the latent heat of 
solidification.  

Let x be the spatial variable, t be the time variable, T(x,t) 
be the temperature, L be the half-thickness of the slab, and

 s t L  be the location of the liquid-solid interface. Then, the 

Stefan Problem is written as: 

 
Figure 2.  Soft reduction operation to reduce centerline segregation. 
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          , , , 0, , ,t xxT x t aT x t x s t s t L     (1) 

   , ,fT s t t T   (2) 

      0, , , 0,x xT t u t T L t    (3) 

      0 0,0 , 0 ,T x T x s s    (4) 

         , , ,x xt t b T s t t T ts s t    (5) 

where the material is solid for ݔ ∈ ሺ0, ݔ ሻሻ and liquid forݐሺݏ ∈
ሺݏሺݐሻ, ሻܮ , Tf is the melting temperature, a is the thermal 
diffusivity, ݇/ܿߩ௣ , b= ௙ܮߩ/݇	 , the properties: k (thermal 
conductivity), ߩ  (density), ܿ௣	 (specific heat), and ܮ௙ (latent 
heat) can vary with temperature, but stay strictly positive ([5]) 

and are assumed to be positive constants in this paper. u(t) is 
the boundary heat flux. In the equations above, subscripts x 
and t indicate partial derivatives. 

To simplify the problem, several assumptions were made. 
(A1) 	 ଴ܶሺݔሻ  is continuous, ଴ܶሺݔሻ ൑ ௙ܶ, ݔ ∈ ሺ0, ଴ሻݏ  and 

଴ܶሺݔሻ ൌ ௙ܶ, ݔ ∈ ሺݏ଴,  .ሻܮ
That is, the steel is initially below the melting temperature 

in the solid and equal to the melting temperature in the liquid. 
The first condition is physically necessary. The second 
condition is a reasonable simplification. The temperature of 
the liquid steel entering the mold from the tundish is higher 
than the melting temperature, and the difference is called 
superheat. Most of this superheat is removed by the time the 
molten steel reaches the meniscus, where the solidification 
begins. The superheat in the liquid in a caster is around 25 to 
50 °C, while the temperature at the strand surface is hundreds 
of degrees below the melting temperature. Therefore, 
temperature gradients in the liquid pool can be ignored. The 
initial temperature ଴ܶሺݔሻ is the temperature at the meniscus. 
Since the superheat entering the mold is usually monitored 
online at steel plants, the temperature at the meniscus can be 
treated with very small error as uniform and equal to the 
pouring temperature. Under this assumption, the slice domain 
is shown in Figure 3.  

(A2) ݏ଴ ൐ 0.  
In equation (4), the initial temperature distribution across 

(0, L) is assumed known and uniformly equal to the pouring 
temperature, which leads to ଴ݏ	 ൌ 0 . However, in the real 
process, sometimes a little superheat remains in the liquid 
when it first touches the mold wall, so solidification starts 
slightly below the top of the liquid level in the mold (ݏ଴ ൌ 0). 
For other situations, the meniscus can solidify slightly so that 
the shell thickness at the top of the liquid level, is already 
slightly positive (ݏ଴ ൐ 0 ). In both cases, ݏ଴  is reasonable 
approximations usable in a simple model. 

(A3) ݑሺݐሻ is a bounded piecewise continuous non-negative 

function. 
This assumption is physically justified since in the actual 

caster, the feasible range of the cooling water flow rates is 
hard-constrained by the physical limitation of the spray 
cooling system, so the possible flux at the surface is hard-
constrained as well, and piecewise continuous. The sign of 
 .ሻ means that heat is leaving the regionݐሺݑ

The existence and uniqueness of the solution to the Stefan 
problem (1)-(5) under assumptions (A1)-(A3) will be 
addressed in Subsections IIIA and IIIB. 

From [7], assumptions (A1) and (A3) jointly imply the 
second useful consequence: 

      , 0, ; , , .f fT T x s t T T x s t L          (6)

Then, the Stefan condition (5) simplifies to: 
     , .xt bT ts t s t   (7) 

1) Existence 
Lemma 1: The solution T(x,t) of problem (1)-(4) under 

assumptions (A1)-(A3) for a real-valued function s(t) 
satisfies: 

   0 ,xT s t t M    (8) 

where 
 0

,
0

max{max{ ( ), }}f

t x

T T x
M u t

s x





.  

Lemma 2: Under assumptions (A1)-(A3), there exists a 
solution of problem (1)-(5) that is defined for all t > 0. 

2) Stability, Uniqueness, and Monotone Dependence 
Let (Ti,si), i=1,2, denote solutions of the Stefan problem (1) -
(5) for the respective boundary and initial conditions ui, ଴ܶ

௜ 
and ݏ଴

௜ , i=1,2, which satisfy the assumptions (A1)-(A3). 
Suppose that ݏ଴

ଵ ൑ ଴ݏ
ଶ. Then the following results are valid. 

Lemma 3: Under the assumptions (A1)-(A3), the solution 
to the Stefan problem (1)-(5) is unique. 

B. Enthalpy PDE 

Enthalpy PDE, which is a generalized form of conservation 
of energy, is used in [5] to model the 1D slice: 

           , , , , 0,t x x
H T x t k T x t T x t x L    (9) 

where H(T) calculates the enthalpy—the thermodynamic 
internal energy—of the material at temperature T, and k(T) is 
the temperature-dependent conductivity. The boundary 
conditions remain the same as in (3), and assumption (A1) can 
be similarly stated to ensure the problem is physically 
realistic. 

It can be shown [15] that (9) and (1), (2), and (5) are 
equivalent in a weak sense. Suppose k is constant, and H is 
defined as 

       , 1 ,p f fH T x t c L T x t T     (10) 

where ρ and cp are the constant density and specific heat 
respectively, and 1(ꞏ) is the unit step function. Then the weak 
forms of (9)-(10) and (1), (2), and (5) under the assumption 
(A1) are the same. 

While (9) is difficult to analyze mathematically, it may be 
numerically modeled on a fixed computational domain, with 
(10) slightly mollified, giving a similar function ܪሺܶሻ∗ that is 

 
Figure 3.  Simulation domain of 1-D slice through slab thickness. 
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differentiable. The effective specific heat can then be defined 
as the derivative of enthalpy, 

     *
* ,p

dH T
c T x t

dT
  . (11) 

Then, applying the chain rule, equation (8) becomes: 
           * , , , ,p t x x

c T x t T x t k T x t T x t    (12) 

Although equation (12) has the form of a simple transient 
heat conduction problem, the effective specific heat ܿ௣∗  is 
nonlinear, being much larger during phase changes than at 
other temperatures. Using (11)-(12), an effective specific heat 
based model is employed in [5] for a single slice model, and 
in [6] for a multi-slice model. The latter is referred to in [6] as 
CONSENSOR, which represents an industrial-grade software 
sensor, formulated as the 2D temperature/(shell thickness) 
state estimator that is open-loop in the spray-cooling zone but 
has closed-loop initial condition adjustment at the mold exit 
based on the real-time inlet/outlet mold water temperature 
reading. This approach permits a better matching of process 
data in modeling alloys [6], since their solidification occurs 
over a range of temperatures and positions, rather than at a 
single point. CONSENSOR, currently used in production, is 
employed in Section VI to demonstrate the applicability of the 
results derived on the basis of (1)-(5) to the actual industrial 
process. 

III. CONTROL PROBLEM FORMULATION 

Profitability changes according to many circumstances that 
introduce significant complexity in determining optimal 
casting conditions. For the steel grade studied in [3] the 
concerns about centerline segregation dominate. For the 
casters that employ soft reduction technique to mitigate 
centerline segregation, the ML control is of central 
significance.  

The present paper considers a problem complementary to 
the reduction of the sudden-speed-drop-induced ML 
deviation considered in [3]: minimizing the ML deviation 
during a sudden, and more dangerous due to the possibility of 
the molten steel escape, casting speed increase from ݒଵ to ݒଶ 
in a thick-slab caster, completing thereby a preliminary study 
of the bang-bang control application to ML deviation 
reduction under sudden speed changes in continuous steel 
casting.  

A. Multi-slice Model 

As indicated above, enthalpy PDE (9) and Stefan problem (1), 
(2), and (5) are equivalent in a weak sense. CON1D is a 
single-slice model [5] employing (11)-(12), which represent a 
generalized version of (9). The existence and uniqueness of 
the solution of the single-slice Stefan problem have been 
shown in Section IIA. The same conclusion also follows for 
the equivalent single-slice model, CON1D. 

As shown in Figure 1, CONSENSOR [6] repeats the 
CON1D calculation for multiple slices simultaneously, 
producing the temperature profile along the entire caster (z) 
and through its thickness (x) in real time. CONSENSOR uses 
delay interpolation method [6] to search for the latest 
temperature histories available from each CON1D slice at 
locations along the caster.  

Theorem 1: Let Ti(x, t) be the solution to ith slice of the 
single-phase Stefan problem (1)-(5) under the assumption 
(A1)-(A3), let z be the casting direction. Then the solution 
T(x,z,t) of the CONSENSOR  model exists and is unique. 

B. Single-slice Based Optimization Problem 

A schematic of different slices in a part of the caster is shown 
in Figure 4. Suppose the ML is ݖ௠௟ while casting at ݒଵ. When 
the casting speed suddenly increases to ݒଶ at ݐ ൌ 0, slices are 
in various locations in the caster with various shell thickness 
and temperature distribution across x-axis. Take slice i in 
Figure 4 as an example. When casting speed increases (ݐ ൌ
0), it is at location  ݖ௜ with shell thickness ݏ଴

௜  and temperature 
distribution ଴ܶ

௜ሺݔሻ.  

Let ݐଵ
௜  and ݐଶ

௜ 	be the times when the slice i reaches ݖ௠௟ 
under casting speeds ݒଵ and ݒଶ respectively. Then we have 

 1 2
1 2

,i iml i ml iz z z z
t t

v v

 
  , (13) 

and since ݒଵ ൏ ଵݐ ଶ, we haveݒ
௜ ൐ ଶݐ

௜ . After the speed increase, 
if u(t) stays the same, then for slice i, ݏ௜൫ݐଵ

௜൯ ൌ ܮ ൐ ଶݐ௜൫ݏ
௜ ൯ , 

where L is the half slab thickness. This means that the new 
ML at ݒଶ will be greater than ݖ௠௟, which is consistent with the 
simulation result in Figure 5a. 

The objective is to minimize the ML deviation. The ML is 
the location where the slice is fully solid, i.e. ݏ௜ሺݐሻ ൌ  If .ܮ
ଶݐ௜൫ݏ

௜ ൯ ൌ ܮ  and ݏ௜ሺݐሻ ൏ ,ܮ 0 ൏ ݐ ൏ ଶݐ
௜ , the ML of slice i at 

casting speed of  ݒଶ is also ݖ௠௟  and the ML deviation is 0. 
Therefore, the objective is modified to the following: to 
minimize the difference between  ݏ௜൫ݐଶ

௜ ൯	and ܮ. 
Define the cost function 

  2
i i iJ s t L    (14) 

with a control function u(t) set  

  1 2 1 2, , 0K N u t N N N    . 

The hard constraint N1 stands for the fact that the cooling 
sprays are never completely shut off for technical reasons so 
that the water flow rate has a lower bound. The hard constraint 

 
Figure 4.  Illustration of problem formulation for different slices in the 

caster during the speed increase. 
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N2 stands for the fact that the spray cooling servo has spray 
rate limit.   

 Problem (I). Find ݑ௢௜ ∈  such that ܭ

   mini i
o u K

J u J u


 

Results in [3] show that under sudden speed drop, the 
undershoot right after the speed change in ML profile is 
unavoidable. Simulation result in Figure 5b shows that under 
sudden speed increases, an overshoot in ML profile is also 
unavoidable. Therefore, for slices close to ݖ௠௟  at ݐ ൌ 0 , 
ଶݐ௜൫ݏ

௜ ൯ ൏ ܮ . The following optimization problem is 
considered first.  

Problem (II). Find ݑ௢௜ ∈  such that ܭ

   2 2maxi
i
o

i i
u

i
u u K

s t s t


 

where ݏ௨௜ ሺݐሻ represents the solution of free boundary to the 
Stefan problem (1)-(5) under initial condition ଴ܶ

௜ሺݔሻ, ݏ଴
௜ 	and 

boundary condition u(t) for slice i. 
Theorem 2: There exists a solution of Problem (II). 
Theorem 3: There exists a solution u of Problem (II), given 

by: 

   2 2, iu t N t t  .  (15) 

C. Multi-slices Based Optimization Problem 

The discussion in Subsection IIIB focuses on a single slice, 
but CONSENSOR [6] manages N (from 200 to 400) slices 
with a uniform spatial interval in between. When the casting 
speed changes, the maximum ML deviation during the 
transition is determined by the slice that has the largest ML 
deviation among all slices. As shown in Figure 4, N slices 
simulated by CONSENSOR are at various locations in the 
caster. For each slice, its shell thickness and temperature 
distribution at ݐ ൌ 0  are treated as new initial conditions, 
denoted by ݏ଴

௜ , 	 ଴ܶ
௜, ݅ ൌ 1,2, . . , ܰ. Since slices are at various 

locations, they have different dwell time to travel from their 
location to ݖ௠௟, denoted as ݐଶ

௜ , ݅ ൌ 1,2, . . , ܰ. 
For each slice, Problem (I) will be solved. And the slice 

that has 

  
1,2,...,
max i i

oi N
J J u


   (16) 

determines the maximum ML deviation. 
However, in the real continuous casting process, there is 

another significant constraint, currently not reflected in the 
formal optimization problem setting: the spray-cooling region 
is divided into several aggregated spray zones, each linking a 
group of spray nozzles together. A spray zone typically can 
only have just one spray flow rate over the entire zone. 
Therefore, the control variable u(t) is not independent of 
different slices: when we determine ݑ௢௜  that solves problem (I) 
for slice i, ui+1(t) has also to be determined for slice i+1 for the 
time that these two slices stay in the same spray cooling zone.  

At this time solution to the above optimization problem is 
not yet formally derived and will be part of future work. The 
control signal in Selection IV has been computed heuristically 
through simulations, considering spray zone aggregation. 

IV. SIMULATION AND DISCUSSION 

The simulation is carried out based on the model of the 
thick-slab (221 mm) caster at JFE Steel, Japan [3] under 
casting speed increase from 1.5 m/min to 1.7 m/min. The 
simulated steel properties, casting conditions, and physical 
limitation of the spray cooling system are those given in 
Tables 1, 2, and 3 of [3]. The parameters k, ρ, Lf, and cp vary 
with temperature T according to [2]. Theorems 2 and 3 show 
that to minimize the deviation of shell thickness after speed 
increase, the boundary cooling flux, i.e. the spray flow rate, 
needs to be maximized. Due to hard constraints of spray, 
bang-bang control method has been considered. 

Two-step bang-bang control sequence has been developed 
heuristically by finding boundary heat flux commands to 
minimize the deviation of average shell thickness at each 
spray zone sequentially through simulations in order to 

 
(a) No control. 

 

 
(b) Single speed change to maximum flow rate after speed increase. 
 

 
(c) Two-step bang-bang control sequence 

Figure 5.  Model prediction of metallurgical length during speed 
increase under different control methods. 
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minimize the ML deviation. The following two-step bang-
bang control sequence was proposed: 

 2 2

2

( ) 0,

( ) ( ) 0 ,

( ) ,

i

i i i
b b

i i
b

u orig if t

u t u max if t t

u final if t t

 
  
 

  (17) 

where ݑଶ௕
௜  is the boundary heat flux, ݐଶ௕

௜  is the switching time 
for spray zone i, ݑ௜ሺ݃݅ݎ݋ሻ, ݑ௜ሺ݉ܽݔሻ, and ݑ௜ሺ݂݈݅݊ܽሻ are the 
original, maximum, and final heat fluxes at spray zone i. 
ሻ݃݅ݎ݋௜ሺݑ and ݑ௜ሺ݂݈݅݊ܽሻ are hypothetical, but still realistic, 
which achieves the same ML at casting speeds of 1.5 m/min 
and 1.7 m/min given in Table 4 of [3]. 

The resulting ML profile under the two-step bang-bang 
control sequence is shown in Figure 5c. The maximum ML 
deviation is 0.66 m. Compared with the constant spray cooling 
case in Figure 5a, the ML deviation is reduced by 79.4%. It 
appears that the ML control during speed increase is more 
effective than during speed drop (with minimum ML 
deviation of 0.66m for speed increase compared with 0.8 m 
[3] for speed drop). However, the performance is limited by 
hard spray flow rate constraints. 

The results show that the practical ability to control ML 
variations in this thick-slab caster is relatively limited due to 
hard constraints on the water flow rates.  However, in the thin-
slab and the medium-slab casters, ML variations are expected 
to be controlled much more effectively.  

V. CONCLUSION AND FUTURE WORK 

In this paper, the existence and uniqueness of the solution 
to Stefan problem under bang-bang optimal control 
(piecewise continuous and bounded) signal are proven. An 
ML control problem in continuous casting of steel is 
formulated and solved numerically. Finding the analytical 
solution to the proposed optimization problem will be 
addressed in future work. 
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